Affiliation:
1. Centre de recherche, Hôpital Laval, Institut universitaire de cardiologie et de pneumologie de l'Université Laval, Québec, QC, Canada
Abstract
Summary
Serotonin, well known for its role in depression, has been shown to modulate immune responses. Interestingly, the plasma level of serotonin is increased in symptomatic asthmatic patients and the use of anti-depressants, known to reduce serotonin levels, provokes a decrease in asthma symptoms and an increase in pulmonary function. Thus, we tested the hypothesis that serotonin affects alveolar macrophage (AM) cytokine production, altering the cytokine network in the lung and contributing to asthma pathogenesis. AMs were treated with different concentrations of serotonin (10-11−10-9 M) or 5-HT1 and 5-HT2 receptor agonists for 2 h prior stimulation. T helper 1 (Th1) and Th2 cytokines, prostaglandin-E2 (PGE2) and nitric oxide (NO) were measured in cell-free supernatants. Serotonin significantly inhibited the production of tumour necrosis factor (TNF) and interleukin (IL)-12, whereas IL-10, NO and PGE2 production were increased. These immunomodulatory effects of serotonin were mimicked by 5-HT2 receptor agonist but were not abrogated by 5-HT2 receptor antagonist, suggesting the implication of other 5-HT receptors. Inhibitors of cyclooxygenase and antibody to PGE2 abrogated the inhibitory and stimulatory effect of serotonin on TNF and IL-10 production, respectively, whereas NO synthase inhibitor eliminated serotonin-stimulated IL-10 increase. Furthermore, PGE2 significantly increased AM IL-10 and NO production. These results suggest that serotonin alters the cytokine network in the lung through the production of PGE2. The reduction of Th1-type cytokine by serotonin may contribute to asthma pathogenesis.
Publisher
Oxford University Press (OUP)
Subject
Immunology,Immunology and Allergy