Skewed T cell receptor repertoire of Vδ1+ γδ T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein–Barr virus-infected B cells in clonal restriction

Author:

Fujishima N1,Hirokawa M1,Fujishima M1,Yamashita J2,Saitoh H1,Ichikawa Y1,Horiuchi T1,Kawabata Y1,Sawada K-I1

Affiliation:

1. Division of Hematology and Oncology, Department of Medicine

2. Radioisotope Division, Bioscience Center, Akita University School of Medicine, Akita, Japan

Abstract

Summary The proliferation of Vδ1+ γδ T lymphocytes has been described in various infections including human immunodeficiency virus (HIV), cytomegalovirus (CMV) and malaria. However, the antigen specificity and functions of the human Vδ1+ T cells remain obscure. We sought to explore the biological role for this T cell subset by investigating the reconstitution of T cell receptor (TCR) repertoires of Vδ1+ γδ T lymphocytes after human allogeneic haematopoietic stem cell transplantation (HSCT). We observed skewed TCR repertoires of the Vδ1+ T cells in 27 of 44 post-transplant patients. Only one patient developed EBV-associated post-transplant lymphoproliferative disorder in the present patient cohort. The -WGI- amino acid motif was observed in CDR3 of clonally expanded Vδ1+ T cells in half the patients. A skew was also detected in certain healthy donors, and the Vδ1+ T cell clone derived from the donor mature T cell pool persisted in the recipient's blood even 10 years after transplant. This T cell clone expanded in vitro against stimulation with autologous EBV–lymphoblastoid cell lines (LCL), and the Vδ1+ T cell line expanded in vitro from the same patient showed cytotoxicity against autologous EBV–LCL. EBV-infected cells could also induce in vitro oligoclonal expansions of autologous Vδ1+ T cells from healthy EBV-seropositive individuals. These results suggest that human Vδ1+ T cells have a TCR repertoire against EBV-infected B cells and may play a role in protecting recipients of allogeneic HSCT from EBV-associated disease.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3