The effect of antibody isotype and antigenic epitope density on the complement-fixing activity of immune complexes: a systematic study using chimaeric anti-NIP antibodies with human Fc regions

Author:

VALIM Y M LUCISANO1,LACHMANN P J1

Affiliation:

1. Molecular Immunopathology Unit, Medical Research Council Centre, Cambridge, England

Abstract

SUMMARY A systematic study has been carried out to investigate the role of immunoglobulin isotype, epitope density, and antigen/antibody ratio on the capacity of immune complexes to activate the classical and alternative pathways of human complement and for the complexes subsequently to bind to erythrocyte C3b-C4b receptors (CR1). For this purpose, a series of chimaeric monoclonal anti-NIP antibodies was used, which all shared the same combining site but had different human constant domains. Antigen epitope density was varied by coupling different numbers of NIP hapten molecules to bovine serum albumin. All three parameters affect complement fixation. In general, complement activation is better in antibody excess and at equivalence than it is in antigen excess, and better at high epitope density than at low epitope density, although the effects are variable for different immunoglobulin isotypes and for the two pathways. It has been confirmed that IgG1 and IgG3 are good activators of the classical pathway and are tolerant to variations in both epitope density and antigen/antibody ratio. IgG4 and IgA do not activate the classical pathway in any circumstances. IgG2 activates the classical pathway only at high epitope density and at equivalence or antibody excess. IgM activates the classical pathway well only at the higher epitope densities and at equivalence or antibody excess but, in addition, shows an interesting and unexpected prozone phenomenon where immune complex in antibody excess inhibits complement activation by the classical pathway. The results of the alternative pathway activation are strikingly different. IgA is by far the best activator of the alternative pathway and is relatively tolerant to epitope density and to antigen/antibody ratio. IgM, IgG1 and IgG3 do not significantly activate the alternative pathway in any circumstances. IgG2 is the best IgG subclass for alternative pathway activation but requires high epitope density and equivalence or antibody excess. Binding to CR1 in general parallels the amount of complement fixed independent to the pathway by which it is fixed. However, IgG1 and IgG3 complexes in antigen excess activate complement well but bind poorly to CR1. Nascently formed complexes seem to bind complement in a way that is similar to that bound by preformed complexes, but are then less able to bind to red cell CR1. These observations help to explain the pathogenesis of complement activation in various autoimmune and immune complex diseases such as systemic lupus erythematosus, autoimmune thyroiditis and others.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3