Design of a complement mannose-binding lectin pathway-specific activation system applicable at low serum dilutions

Author:

Harboe M1,Garred P2,Borgen M S1,Stahl G L3,Roos A4,Mollnes T E1

Affiliation:

1. Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, Oslo, Norway

2. Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark

3. Center for Experimental Therapeutics and Reperfusion Injury, Harward Medical School, Boston, MA, USA

4. Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands

Abstract

Summary Recently we showed that alternative pathway (AP) amplification was responsible for more than 80% of specific classical pathway-induced terminal pathway activation under physiological conditions. The present study aimed to design a system for specific lectin pathway (LP) activation applicable at low serum dilutions with a fully functional AP. Comparison between activation of normal human serum (NHS), a mannose-binding lectin (MBL) homozygous D/D-deficient serum, and sera deficient in C1q and C2, all diluted 1 : 2, was essential to document optimal conditions for LP specificity. Mannan on the solid phase of enzyme-linked immunosorbent assay (ELISA) plates was used for activation, showing 0·5 µg mannan/well to give optimal conditions because at this concentration a good signal was preserved for C4 and TCC deposition in NHS, whereas the C3 deposition observed in C2-deficient serum at higher mannan concentrations reached nadir at 0·5 µg/well, indicating a lack of direct AP activation under these conditions. Pooled NHS and C1q-deficient serum gave the same degree of C4 and terminal complement complex (TCC) deposition, whereas deposition of these products was not obtained with MBL-deficient serum. Reconstitution with purified MBL, however, restored the depositions. A blocking anti-MBL monoclonal antibody (mAb) completely abolished the complement deposition, in contrast to a non-inhibiting anti-MBL mAb. Activation of C2-deficient serum induced C4 deposition similar to NHS, but negligible deposition of C3 and TCC, confirming the lack of direct activation of AP. Thus, this assay is unique in being LP-specific at low serum dilution and thus particularly suitable to study LP activation mechanisms and the role of AP amplification under physiological conditions.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3