Oral non-typable Haemophilus influenzae enhances physiological mechanism of airways protection

Author:

Clancy R L123,Dunkley M L12

Affiliation:

1. School of Biomedical Sciences, Faculty of Health, University of Newcastle

2. Hunter Immunology Ltd, David Maddison Building, University of Newcastle

3. Immunology, Hunter Area Pathology Service, HNEHS, John Hunter Hospital, Newcastle, UK

Abstract

Summary Oral immunotherapy with inactivated non-typeable Haemophilus influenzae (NTHi) prevents exacerbations of chronic obstructive pulmonary disease, but the mechanism is unclear. The aim of this study was to determine the mechanism of protection. This was a placebo versus active prospective study over 3 months in 64 smokers. The active treatment was three courses of oral NTHi given at monthly intervals, followed by measurement of bacteriological and immunological parameters. The results can be summarized: (i) NTHi-specific T cells increased in the placebo treatment group over time (P < 0·05); (ii) the T cell response in the oral NTHi group started earlier than that in the placebo group (P < 0·05); and (iii) serum NTHi-specific immunoglobulin (Ig)G had significantly greater variation in the placebo group (P < 0·0001). The increase in antibody in placebos over time correlated with exposure to live H. influenzae (P < 0·05) determined from culture of gargles; (iv) reduction in saliva lysozyme over time (P < 0·05) was detected only in the oral NTHi treatment group. These data are consistent with T cell priming of gut lymphoid tissue by aspiration of bronchus content into the gut, with oral immunotherapy augmenting this process leading to enhanced bronchus protection. The evidence for protection was a stable IgG antibody level through the study in the oral NTHi treatment group, contrasting with an increase in antibody correlating with exposure of the airways to H. influenzae in the placebo group. Saliva lysozyme was a useful biomarker of mucosal inflammation, falling after oral NTHi consistent with a reduction in the level of intralumenal inflammation.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3