Calcineurin deficiency decreases inflammatory lesions in transforming growth factor β1-deficient mice

Author:

Bommireddy R12,Bueno O F3,Martin J4,Ormsby I4,Chen H1,Gard C1,Molkentin J D3,Boivin G P5,Babcock G F67,Doetschman T189

Affiliation:

1. BIO5 Institute

2. Department of Immunobiology, University of Arizona, Tucson, AZ

3. Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center

4. Department of Molecular Genetics, Biochemistry and Microbiology

5. Comparative Pathology

6. Surgery, University of Cincinnati College of Medicine

7. Shriners Hospital for Children, Cincinnati, OH

8. Department of Cell Biology and Anatomy

9. Cancer Center, University of Arizona, Tucson, AZ, USA

Abstract

Summary Transforming growth factor (TGF) β1) is an immunoregulatory cytokine involved in self-tolerance and lymphocyte homeostasis. Tgfb1 knock-out (KO) mice develop severe multi-focal autoimmune inflammatory lesions due to [Ca2+]i deregulation in T cells, and die within 3 weeks after birth. Because the calcineurin inhibitor FK506 inhibits the hyperresponsiveness of Tgfb1−/− thymocytes, and because calcineurin Aβ (CNAβ)-deficient mice do not reject allogenic tumours, we have generated Tgfb1−/−Cnab−/− mice to address whether CNAβ deficiency prevents T cell activation and inflammation in Tgfb1−/− mice. Here we show that in Tgfb1−/−Cnab−/− mice inflammation is reduced significantly relative to that in Tgfb1−/− mice. However, both CD4+ and CD8+ T cells in double knock-out (DKO) mice are activated, as revealed by up-regulation of CD11a lymphocyte function-associated antigen-1 (LFA-1), CD44 and CD69 and down-regulation of CD62L. These data suggest that deficiency of CNAβ decreases inflammatory lesions but does not prevent activation of autoreactive T cells. Also Tgfb1−/− T cells can undergo activation in the absence of CNAβ, probably by using the other isoform of calcineurin (CNAα) in a compensatory manner. CNAβ-deficient T cells undergo spontaneous activation in vivo and are activated upon anti-T cell receptor stimulation in vitro. Understanding the role of calcineurin in T cell regulation should open up new therapeutic opportunities for inflammation and cancer.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3