Affiliation:
1. Niigata University Graduate School of Medicine and Dental Science, Division of Hematology, Department of Regenerative and Transplant Medicine
2. Niigata University Medical & Dental Hospital Regeneration, Transfusion and Transplantation Division, Bioscience Medical Research Center
3. Niigata University, School of Health Sciences, Faculty of Medicine, Niigata, Japan
Abstract
Summary
Immune complexes (ICs) improve the capacity of priming specific CD8+ cytotoxic T cell responses of dendritic cells (DCs). ICs induce phosphorylation of mitogen-activated protein kinases (MAPK) and calcium influx, although the precise regulating mechanism still remains unclear. In the present study, we investigated the effect of a Ca2+ channel blocker on the phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) in immature monocyte-derived DCs stimulated with lipopolysaccharide (LPS) or LPS-ICs, and the production of interleukin (IL)-12 family members (p40, p70, IL-23), T helper type 17 (Th17) cytokines (IL-6 and IL-23), tumour necrosis factor (TNF)-α and IL-10 were also investigated. In comparison with LPS stimulation, LPS-ICs stimulation enhanced p38 MAPK phosphorylation significantly, which was associated with an increase in IL-12 p40 monomer/homodimer secretion. LPS-ICs also enhanced TNF-α and IL-6 secretion, but suppressed IL-23 secretion. The use of azelnidipine (Aze), a long-acting L-type Ca2+ channel blocker with a high lipid solubility, suppressed p38 MAPK phosphorylation stimulated with LPS or LPS-ICs, but surprisingly enhanced IL-12 p40 monomer/homodimer secretion stimulated with LPS-ICs. This IL-12 p40 secretion-enhancing effect was not accompanied by IL-10 or IL-23 production, but was associated with ERK phosphorylation. The use of Aze did not affect IL-12 p70 production. These results suggest that the use of Aze enhances ICs-mediated IL-12 p40 secretion without additional IL-23 secretion. Therefore, the use of Aze and ICs could be a new therapeutic approach to immunomolecular therapy, as it does not cause Th17 differentiation which induces autoimmunity or reduces anti-tumour immunity.
Publisher
Oxford University Press (OUP)
Subject
Immunology,Immunology and Allergy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献