Increased levels of T cell granzyme b in bronchiolitis obliterans syndrome are not suppressed adequately by current immunosuppressive regimens

Author:

Hodge S1,Hodge G1,Ahern J1,Liew C-L12,Hopkins P3,Chambers D C3,Reynolds P N1,Holmes M12

Affiliation:

1. Lung Research Laboratory, Hanson Institute

2. South Australian Lung Transplant Service, Royal Adelaide Hospital, Adelaide, SA

3. Queensland Centre for Pulmonary Transplantation and Vascular Disease, The Prince Charles Hospital, Brisbane, Qld, Australia

Abstract

Summary Bronchiolitis obliterans syndrome (BOS) is characterized by persistent alloreactive, infective and non-specific epithelial injury, loss of epithelial integrity and dysregulated repair. We have reported increased apoptosis of epithelial cells collected from the large airway in lung transplant recipients. As part of the alloreactive response, T cells induce apoptosis of target epithelial cells by secreting granzyme b. We hypothesized that granzyme b would be increased in lung transplant patients with acute rejection and BOS and that commonly used immunosuppressive agents would fail to suppress this serine protease adequately. We investigated intracellular T cell granzyme b in blood, bronchoalveolar lavage (BAL) and large airway brushing (23 controls, 29 stable transplant, 23 BOS, 28 acute rejection, 31 infection) using flow cytometry and assessed the effect of clinically relevant concentrations of cyclosporin A, tacrolimus, methylprednisolone and a protease inhibitor, gabexate mesilate, on in vitro granzyme b production. Granzyme b was increased significantly in all compartments of all transplant groups compared to controls. Surprisingly, granzyme b was even higher in patients with BOS than in patients with acute rejection. In longitudinal analysis in three patients, blood granzyme b increased prior to or at the onset of BOS. In vitro, methylprednisolone and gabexate mesilate had no effect and cyclosporin A and tacrolimus only a moderate effect on production of granzyme b by CD8+ T cells. Increased T cell granzyme b production may contribute to BOS pathogenesis and is not curtailed by current immunosuppressants. Longitudinal investigation of granzyme b in blood may provide an adjunctive non-invasive method for predicting BOS/OB.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3