Role of tumour necrosis factor and reactive oxygen intermediates in lipopolysaccharide-induced pulmonary oedema and lethality

Author:

GATTI S1,FAGGIONI R1,ECHTENACHER B2,GHEZZI P1

Affiliation:

1. ‘Mario Negri’ Institute for Pharmacological Research, Milan, Italy

2. Deutsches Krebsforschungszentrum, Heidelberg, Germany

Abstract

SUMMARY The purpose of this study was to characterize the role of tumour necrosis factor (TNF) and neutrophils (PMN) in the pathogenesis of pulmonary oedema induced by endotoxin (lipopolysac-charide (LPS)). Intraperitoneal administration to BALB/c mice of 0–6–1 mg of LPS caused pulmonary oedema and lethality. This was associated with production of TNF in serum and bronchoalveolar lavage fluid and with accumulation of PMN in the lung. In this experimental model, we could block TNF production by different means: pretreatment 30 min before LPS with 4 mg/kg of i.p. chlorpromazine (CPZ), 3 mg/kg of i.p. dexamethasone (DEX), 1 g/kg p.o. of N-acctylcysteine (NAC, an antioxidant precursor of glutathione), or an anti-TNF MoAb. CPZ, DEX and anti-TNF completely prevented LPS lethality but not pulmonary oedema or pulmonary PMN infiltration, indicating that: (i) lung oedema is not the main cause of death after LPS; and (ii) lung oedema induced by LPS is not mediated by TNF. Pretreatment with NAC not only inhibited TNF production but also protected against LPS-induced pulmonary oedema, indicating that reactive oxygen intermediates are implicated. NAC also blocked TNF production in blood and in bronchoalveolar lavage. We also tested the effect of PMN depletion induced with cyclophosphamide (CP) or 5-fluorouracil (5-FU). While no pulmonary PMN infiltrate was observed in PMN-depleted mice, neutropenia did not prevent LPS lethality or oedema, indicating PMN do not play an important role in the toxic effects of LPS in this experimental model.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3