Transformations between 2MASS, SDSS and BVRI photometric systems: bridging the near-infrared and optical

Author:

Bilir S.1,Ak S.1,Karaali S.2,Cabrera-Lavers A.34,Chonis T. S.5,Gaskell C. M.5

Affiliation:

1. Department of Astronomy and Space Sciences, Istanbul University Science Faculty, 34119 University-Istanbul, Turkey

2. Department of Mathematics and Computer, Faculty of Science and Letters, Beykent University, Beykent 34398, Istanbul, Turkey

3. Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain

4. GTC Project Office, E-38205 La Laguna, Tenerife, Spain

5. Department of Physics & Astronomy, University of Nebraska, Lincoln, NE 68588-0111, USA

Abstract

Abstract We present colour transformations for the conversion of the Two Micron All Sky Survey (2MASS) photometric system to the Johnson–Cousins UBVRI system and further into the Sloan Digital Sky Survey (SDSS) ugriz system. We have taken SDSS gri magnitudes of stars measured with the 2.5-m telescope from SDSS Data Release 5 (DR5), and BVRI and JHKs magnitudes from Stetson's catalogue and Cutri et al., respectively. We matched thousands of stars in the three photometric systems by their coordinates and obtained a homogeneous sample of 825 stars by the following constraints, which are not used in previous transformations: (1) the data are dereddened, (2) giants are omitted and (3) the sample stars selected are of the highest quality. We give metallicity, population type and transformations dependent on two colours. The transformations provide absolute magnitude and distance determinations which can be used in space density evaluations at short distances where some or all of the SDSS ugriz magnitudes are saturated. The combination of these densities with those evaluated at larger distances using SDSS ugriz photometry will supply accurate Galactic model parameters, particularly the local space densities for each population.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3