Accumulation of plasma cells expressing CXCR3 in the synovial sublining regions of early rheumatoid arthritis in association with production of Mig/CXCL9 by synovial fibroblasts

Author:

Tsubaki T1,Takegawa S2,Hanamoto H2,Arita N1,Kamogawa J3,Yamamoto H3,Takubo N4,Nakata S4,Yamada K4,Yamamoto S4,Yoshie O2,Nose M1

Affiliation:

1. Departments of Pathology, Japan

2. Microbiology, Kinki University School of Medicine, Osaka, Japan

3. Orthopedics, Ehime University School of Medicine, Ehime, Japan

4. Center for Rheumatic Diseases, Matsuyama Red Cross Hospital, Ehime, Japan

Abstract

Summary Accumulation of plasma cells in the synovium is one of the diagnostic hallmarks in the histopathological manifestations of rheumatoid arthritis (RA). This seems to be prominent even prior to significant B cell infiltration and/or formation of lymphoid follicles in the synovium. To clarify the mechanism of early plasma cell accumulation, we examined in situ expression of chemokines and their receptors using synovial targeting biopsy specimens, which were obtained under arthroscopy from early RA patients. By immunohistochemical staining, plasma cells were found to express a chemokine receptor CXCR3, while synovial fibroblasts in the synovial sublining regions expressed its ligand, Mig/CXCL9. By reverse transcription-polymerase chain reaction (RT-PCR), using targeted lesions of synovial tissues obtained by laser capture microdissection, expression levels of Mig/CXCL9 in the synovial sublining regions were remarkably high and were likely to be associated with interferon (IFN)-γ expression. Furthermore, cultured synovial fibroblasts were confirmed to produce Mig/CXCL9 upon stimulation with IFN-γ. Our results indicate that in the early stage of RA, plasma cells expressing CXCR3 may be recruited directly from the circulation into the synovial sublining regions by its ligand, Mig/CXCL9, produced by synovial fibroblasts.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3