Neutrophilic granulocytes are the predominant cell type infiltrating pancreatic islets in contact with ABO-compatible blood

Author:

Moberg L1,Korsgren O1,Nilsson B1

Affiliation:

1. Department of Oncology, Radiology and Clinical Immunology, Division of Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden

Abstract

Summary The poor outcome of intraportal islet transplantation may be explained by the instant blood-mediated inflammatory reaction (IBMIR), characterized by islet entrapment in blood clots, leucocyte infiltration and disruption of islet morphology. Here we employ a newly developed in vitro system to identify the blood cells involved in this process. Islets were mixed with ABO-compatible blood in heparinized tubes and incubated for various times up to 6 h. Clots were analysed immunohistochemically for detection of platelets (CD41a), leucocytes/lymphocytes (CD11b), granulocytes (CD16, lysozyme), neutrophilic granulocytes (neutrophil elastase), eosinophilic granulocytes (NaCN + H2O2), macrophages (CD68), dendritic cells (CD209/DC-SIGN), B cells (CD20) and T cells (CD4, CD8). Platelets were rapidly deposited around the islets in contact with the blood, reaching a maximum by 30 min. The first neutrophilic granulocytes appeared in the islets after 15 min, increased at 1 h and peaked at 2 h. Small numbers of macrophages were found infiltrating the islets already after 5 min, with a slight increase over time. However, control stainings of cultured islets and pancreas biopsies identified these cells as being largely of donor origin. No T cells, B cells, dendritic cells or eosinophilic granulocytes were detected during the 6 h observation time. Neutrophilic granulocytes were identified as the main infiltrating blood cell in islets exposed to blood, implying that these cells play a key role in clinical islet transplantation. Because islets are known to be exquisitely susceptible to oxidative stress, development of drugs targeting neutrophilic cytotoxicity could markedly improve the outcome of islet transplantation.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3