Affiliation:
1. Department of Internal Medicine, The University of Texas Medical Branch, USA
2. Shriners Hospitals for Children, Galveston, USA
Abstract
Summary
Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), is a major cause of sepsis in patients who are immunosuppressed by their burns. In this study, an immunological regulation of MRSA infection was attempted in a mouse model of thermal injury. SCIDbg mice were resistant to MRSA infection, while SCIDbgMN mice (SCIDbg mice depleted of neutrophils and macrophages (Mφ)) were susceptible to the same infection. Also, thermally injured SCIDbg mice were shown to be susceptible to MRSA infection. On the other hand, the resistance of SCIDbgMN mice to the infection was completely recovered after an inoculation with Mφ from normal mice. However, anti-MRSA resistance was not shown in SCIDbgMN mice inoculated with Mφ from thermally injured mice. Mφ from MRSA-infected thermally injured mice were identified as alternatively activated Mφ, and Mφ from MRSA-infected unburned mice were characterized as classically activated Mφ. Mφ from thermally injured SCIDbg mice previously treated with 2-carboxyethylgermanium sesquioxide (Ge-132) protected SCIDbgMN mice against MRSA infection. Ge-132 has been described as an inhibitor of alternatively activated Mφ generation. These results suggest that MRSA infection in thermally injured patients is controlled immunologically through the induction of anti-MRSA effector cells and elimination of burn-associated alternatively activated Mφ, which are cells that inhibit the generation of classically activated Mφ.
Publisher
Oxford University Press (OUP)
Subject
Immunology,Immunology and Allergy
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献