1,25-Dihydroxyvitamin D3 inhibits lipopolysaccharide-induced immune activation in human endothelial cells

Author:

Equils O1,Naiki Y1,Shapiro A M2,Michelsen K1,Lu D1,Adams J3,Jordan S1

Affiliation:

1. Departments of Pediatrics and

2. Division of Pediatric Drug Development, Office of Counter-Terrorism and Pediatric Drug Development Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, MD, USA

3. Internal Medicine, Steven Spielberg Pediatric Research Center, Burns and Allen Research Institute, Cedars-Sinai Medical Center Geffen School of Medicine at UCLA, Los Angeles, CA

Abstract

Summary In addition to its well-known role in mineral and skeletal homeostasis, 1,25-dihydroxyvitamin D3[1,25-(OH)2, D3] regulates the differentiation, growth and function of a broad range of immune system cells, including monocytes, dendritic cells, T and B lymphocytes. Vascular endothelial cells play a major role in the innate immune activation during infections, sepsis and transplant rejection; however, currently there are no data on the effect of 1,25-(OH)2 D3 on microbial antigen-induced endothelial cell activation. Here we show that 1,25-(OH)2 D3 pretreatment of human microvessel endothelial cells (HMEC) inhibited the enteric Gram-negative bacterial lipopolysaccharide (LPS) activation of transcription factor NF-κB and interleukin (IL)-6, IL-8 and regulated upon activation normal T cell exposed and secreted (RANTES) release. The effect of 1,25-(OH)2 D3 was not due to increased cell death or inhibition of endothelial cell proliferation. 1,25-(OH)2 D3 pretreatment of HMEC did not block MyD88-independent LPS-induced interferon (IFN)-β promoter activation. 1,25-(OH)2 D3 pretreatment of HMEC did not modulate Toll-like receptor 4 (TLR4) or MD-2 expression. These data suggest that 1,25-(OH)2 D3 may play a role in LPS-induced immune activation of endothelial cells during Gram-negative bacterial infections, and a suggest a potential role for 1,25-(OH)2 D3 and its analogues as an adjuvant in the treatment of Gram-negative sepsis.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3