Sildenafil treatment attenuates lung and kidney injury due to overproduction of oxidant activity in a rat model of sepsis: a biochemical and histopathological study

Author:

Cadirci E1,Halici Z1,Odabasoglu F2,Albayrak A1,Karakus E3,Unal D4,Atalay F2,Ferah I1,Unal B4

Affiliation:

1. Department of Pharmacology

2. Department of Biochemistry, Ataturk University Faculty of Pharmacy

3. Department Pharmacology, Ataturk University Faculty of Veterinary Medicine

4. Histology and Embriology, Ataturk University Faculty of Medicine, Erzurum, Turkey

Abstract

Summary Sepsis is a systemic inflammatory response to infection and a major cause of morbidity and mortality. Sildenafil (SLD) is a selective and potent inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase PDE5. We aimed to investigate the protective effects of sildenafil on caecal ligation and puncture (CLP)-induced sepsis in rats. Four groups of rats were used, each composed of 10 rats: (i) 10 mg/kg SLD-treated CLP group; (ii) 20 mg/kg SLD-treated CLP group; (iii) CLP group; and (iv) sham-operated control group. A CLP polymicrobial sepsis model was applied to the rats. All groups were killed 16 h later, and lung, kidney and blood samples were analysed histopathologically and biochemically. Sildenafil increased glutathione (GSH) and decreased the activation of myeloperoxidase (MPO) and of lipid peroxidase (LPO) and levels of superoxide dismutase (SOD) in the septic rats. We observed a significant decrease in LPO and MPO and a decrease in SOD activity in the sildenafil-treated CLP rats compared with the sham group. In addition, 20 mg/kg sildenafil treatment in the sham-operated rats improved the biochemical status of lungs and kidneys. Histopathological analysis revealed significant differences in inflammation scores between the sepsis group and the other groups, except the CLP + sildenafil 10 mg/kg group. The CLP + sildenafil 20 mg/kg group had the lowest inflammation score. Sildenafil treatment decreased the serum tumour necrosis factor (TNF)-α level when compared to the CLP group. Our results indicate that sildenafil is a highly protective agent in preventing lung and kidney damage caused by CLP-induced sepsis via maintenance of the oxidant–anti-oxidant status and decrease in the level of TNF-α.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Reference66 articles.

1. Pathogenetic mechanisms of septic shock;Parrillo;N Engl J Med,1993

2. Experimental therapeutic strategies for severe sepsis: mediators and mechanisms;Parrish;Ann NY Acad Sci,2008

3. Definition of sepsis;Matot;Intens Care Med,2001

4. Pathophysiology of sepsis;Remick;Am J Pathol,2007

5. Sepsis, SIRS and MODS;Griffiths;Surgery,2009

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3