Surfactant protein D inhibits lipopolysaccharide-induced monocyte chemoattractant protein-1 expression in human renal tubular epithelial cells: implication for tubulointerstitial fibrosis

Author:

Hu F12,Liang W1,Ren Z1,Wang G2,Ding G1

Affiliation:

1. Division of Nephrology, Department of Medicine, Renmin Hospital of Wuhan University, Wuhan, China

2. Department of Surgery, Upstate Medical University, The State University of New York (SUNY), Syracuse, NY, USA

Abstract

Summary Surfactant protein D (SP-D), a member of the C-type lectin (collectin) protein family, plays a critical role in innate host defence against various microbial pathogens and in the modulation of inflammatory responses in the lung. However, little is known about its expression and biological function in the kidney. In this work, we studied SP-D expression in human kidney and cultured human renal proximal tubular epithelial cells (HK-2), and examined the effect of SP-D on proinflammatory cytokine production after lipopolysaccharide (LPS) stimulus. We observed the expression of both SP-D mRNA and protein in human kidney and in-vitro HK-2 cells by immunohistochemistry, Western blot analysis, reverse transcription–polymerase chain reaction (RT–PCR) and real-time PCR. To explore the potential role of SP-D in the pathogenesis of tubulointerstitial fibrosis in kidney infection, we examined the production of monocyte chemoattractant protein-1 (MCP-1) in HK-2 cells after LPS treatment. Results showed that the level of MCP-1 in the conditioned medium increased significantly when HK-2 cells were cultured with LPS (>0·1 µg/ml) for 8 h. Of interest, LPS treatment inhibited SP-D expression in HK-2 cells. Furthermore, over-expression of SP-D reduced significantly the LPS-induced expression of MCP-1 in transfected cells. These findings suggest that SP-D in the kidney functions as an anti-inflammatory factor in renal tubular epithelial cells and may modulate tubulointerstitial fibrosis in kidney.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3