Antibody-mediated depletion of lymphocyte-activation gene-3 (LAG-3+)-activated T lymphocytes prevents delayed-type hypersensitivity in non-human primates

Author:

Poirier N1,Haudebourg T1,Brignone C2,Dilek N1,Hervouet J1,Minault D1,Coulon F1,de Silly R V1,Triebel F2,Blancho G1,Vanhove B1

Affiliation:

1. INSERM, UMR643; Institut de Transplantation Urologie Nephrologie (ITUN), CHU de Nantes, Faculté de Médecine, Nantes

2. Immutep SA, Orsay, France

Abstract

Summary Lymphocyte-activation gene-3 (LAG-3, CD223) is a marker for recently activated effector T cells. Activated T lymphocytes are of major importance in many autoimmune diseases and organ transplant rejection. Therefore, specifically depleting LAG-3+ T cells might lead to targeted immunosuppression that would spare resting T cells while eliminating pathogenic activated T cells. We have shown previously that anti-LAG-3 antibodies sharing depleting as well as modulating activities inhibit heart allograft rejection in rats. Here, we have developed and characterized a cytotoxic LAG-3 chimeric antibody (chimeric A9H12), and evaluated its potential as a selective therapeutic depleting agent in a non-human primate model of delayed-type hypersensitivity (DTH). Chimeric A9H12 showed a high affinity to its antigen and depleted both cytomegalovirus (CMV)-activated CD4+ and CD8+ human T lymphocytes in vitro. In vivo, a single intravenous injection at either 1 or 0·1 mg/kg was sufficient to deplete LAG-3+-activated T cells in lymph nodes and to prevent the T helper type 1 (Th1)-driven skin inflammation in a tuberculin-induced DTH model in baboons. T lymphocyte and macrophage infiltration into the skin was also reduced. The in vivo effect was long-lasting, as several weeks to months were required after injection to restore a positive reaction after antigen challenge. Our data confirm that LAG-3 is a promising therapeutic target for depleting antibodies that might lead to higher therapeutic indexes compared to traditional immunosuppressive agents in autoimmune diseases and transplantation.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3