Sevoflurane reduces severity of acute lung injury possibly by impairing formation of alveolar oedema

Author:

Schläpfer M12,Leutert A C12,Voigtsberger S12,Lachmann R A12,Booy C2,Beck-Schimmer B12

Affiliation:

1. Institute of Anesthesiology, University Hospital Zurich

2. Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland

Abstract

Summary Pulmonary oedema is a hallmark of acute lung injury (ALI), consisting of various degrees of water and proteins. Physiologically, sodium enters through apical sodium channels (ENaC) and is extruded basolaterally by a sodium–potassium–adenosine–triphosphatase pump (Na+/K+-ATPase). Water follows to maintain iso-osmolar conditions and to keep alveoli dry. We postulated that the volatile anaesthetic sevoflurane would impact oedema resolution positively in an in-vitro and in-vivo model of ALI. Alveolar epithelial type II cells (AECII) and mixed alveolar epithelial cells (mAEC) were stimulated with 20 µg/ml lipopolysaccharide (LPS) and co-exposed to sevoflurane for 8 h. In-vitro active sodium transport via ENaC and Na+/K+-ATPase was determined, assessing 22sodium and 86rubidium influx, respectively. Intratracheally applied LPS (150 µg) was used for the ALI in rats under sevoflurane or propofol anaesthesia (8 h). Oxygenation index (PaO2/FiO2) was calculated and lung oedema assessed determining lung wet/dry ratio. In AECII LPS decreased activity of ENaC and Na+/K+-ATPase by 17·4% ± 13·3% standard deviation and 16·2% ± 13·1%, respectively. These effects were reversible in the presence of sevoflurane. Significant better oxygenation was observed with an increase of PaO2/FiO2 from 189 ± 142 mmHg to 454 ± 25 mmHg after 8 h in the sevoflurane/LPS compared to the propofol/LPS group. The wet/dry ratio in sevoflurane/LPS was reduced by 21·6% ± 2·3% in comparison to propofol/LPS-treated animals. Sevoflurane has a stimulating effect on ENaC and Na+/K+-ATPase in vitro in LPS-injured AECII. In-vivo experiments, however, give strong evidence that sevoflurane does not affect water reabsorption and oedema resolution, but possibly oedema formation.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Volatile Anesthetic Sedation for Critically Ill Patients;Anesthesiology;2024-06-06

2. Early sevoflurane sedation in severe COVID-19-related lung injury patients. A pilot randomized controlled trial;Annals of Intensive Care;2024-03-27

3. Guidelines for inhaled sedation in the ICU;Revista Española de Anestesiología y Reanimación (English Edition);2024-02

4. Effects on mechanical power of different devices used for inhaled sedation in a bench model of protective ventilation in ICU;Annals of Intensive Care;2024-01-29

5. Guía de sedación inhalada en la UCI;Revista Española de Anestesiología y Reanimación;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3