Trans-dimensional inverse problems, model comparison and the evidence

Author:

Sambridge M.1,Gallagher K.2,Jackson A.3,Rickwood P.1

Affiliation:

1. Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia. E-mail: malcolm.sambridge@anu.edu.au

2. Department of Earth Science and Engineering, Imperial College London, London, SW7 2BP, UK

3. Institut für Geophysik, ETH Zürich, CH-8093 Zürich, Switzerland

Abstract

Summary In most geophysical inverse problems the properties of interest are parametrized using a fixed number of unknowns. In some cases arguments can be used to bound the maximum number of parameters that need to be considered. In others the number of unknowns is set at some arbitrary value and regularization is used to encourage simple, non-extravagant models. In recent times variable or self-adaptive parametrizations have gained in popularity. Rarely, however, is the number of unknowns itself directly treated as an unknown. This situation leads to a transdimensional inverse problem, that is, one where the dimension of the parameter space is a variable to be solved for. This paper discusses trans-dimensional inverse problems from the Bayesian viewpoint. A particular type of Markov chain Monte Carlo (MCMC) sampling algorithm is highlighted which allows probabilistic sampling in variable dimension spaces. A quantity termed the evidence or marginal likelihood plays a key role in this type of problem. It is shown that once evidence calculations are performed, the results of complex variable dimension sampling algorithms can be replicated with simple and more familiar fixed dimensional MCMC sampling techniques. Numerical examples are used to illustrate the main points. The evidence can be difficult to calculate, especially in high-dimensional non-linear inverse problems. Nevertheless some general strategies are discussed and analytical expressions given for certain linear problems.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference63 articles.

1. Posterior Bayes factors;Aitkin;J. of the Royal Stat. Soc., B,1991

2. Parameter estimation and inverse problems;Aster,2005

3. Bayesian inference in geomagnetism;Backus;Geophys. J,1988

4. Comparing hard and soft prior bounds in geophysical inverse problems;Backus;Geophys. J,1988

5. Numerical applications of a formalism for geophysical inverse problems;Backus;Geophys. J. R. astr. Soc,1967

Cited by 260 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3