Human umbilical cord mesenchymal stem cell‐derived exosomes attenuate neuroinflammation and oxidative stress through the NRF2/NF‐κB/NLRP3 pathway

Author:

Che Ji12ORCID,Wang Hui12,Dong Jing12,Wu Yuanyuan12,Zhang Haichao3,Fu Lei3,Zhang Jun12ORCID

Affiliation:

1. Department of Anesthesiology Fudan University Shanghai Cancer Center Shanghai China

2. Department of Oncology, Shanghai Medical College Fudan University Shanghai China

3. Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Fudan University Shanghai China

Abstract

AbstractAimsWe investigated whether human umbilical cord mesenchymal stem cell (hUC‐MSC)‐derived exosomes bear therapeutic potential against lipopolysaccharide (LPS)‐induced neuroinflammation.MethodsExosomes were isolated from hUC‐MSC supernatant by ultra‐high‐speed centrifugation and characterized by transmission electron microscopy and western blotting. Inflammatory responses were induced by LPS in BV‐2 cells, primary microglial cultures, and C57BL/6J mice. H2O2 was also used to induce inflammation and oxidative stress in BV‐2 cells. The effects of hUC‐MSC‐derived exosomes on inflammatory cytokine expression, oxidative stress, and microglia polarization were studied by immunofluorescence and western blotting.ResultsTreatment with hUC‐MSC‐derived exosomes significantly decreased the LPS‐ or H2O2‐induced oxidative stress and expression of pro‐inflammatory cytokines (IL‐6 and TNF‐α) in vitro, while promoting an anti‐inflammatory (classical M2) phenotype in an LPS‐treated mouse model. Mechanistically, the exosomes increased the NRF2 levels and inhibited the LPS‐induced NF‐κB p65 phosphorylation and NLRP3 inflammasome activation. In contrast, the reactive oxygen species scavenger NAC and NF‐κB inhibitor BAY 11–7082 also inhibited the LPS‐induced NLRP3 inflammasome activation and switched to the classical M2 phenotype. Treatment with the NRF2 inhibitor ML385 abolished the anti‐inflammatory and anti‐oxidative effects of the exosomes.ConclusionhUC‐MSC‐derived exosomes ameliorated LPS/H2O2‐induced neuroinflammation and oxidative stress by inhibiting the microglial NRF2/NF‐κB/NLRP3 signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3