Biodegradation of 2,4,6‐trinitrotoluene and hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine by Actinomycetes species, first time isolated and characterized from water, wastewater, and sludge

Author:

Jaafaryneya Murteza1,Amani Jafar1,Halabian Raheleh1ORCID

Affiliation:

1. Applied Microbiology Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences Tehran Iran

Abstract

AbstractBiodegradation has been applied to remediate explosives contaminants, and bacteria have a high potential for the degradation of explosives, such as hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) and 2,4,6‐trinitrotoluene (TNT). The present study aims to screen and characterize explosive biodegradable Actinomycetes from water, wastewater, and sludge. Actinomycetes isolates were recovered from 80 environmental samples from diverse environmental resources in explosive contaminated areas of Iran and identified to the genus and species levels using conventional and molecular methods. The growth rate in the presence of pollutants and chromatography was used to determine their biodegradation capability. Twenty‐nine isolates (36.25%) of Actinomycetes were characterized from the cultured samples that belonged to 6 genus and 24 validated species. The most prevalent Actinomycetes isolated were genus Mycobacterium with 11 isolates (37.94%), genus Rhodococcus with seven isolates (24.13%), genus Nocardia with four isolates (13.8%), and genus Streptomyces with three isolates (10.33%). Moreover, our results showed that these isolates could degrade and consume 50–80% of RDX and TNT as their sole carbon and energy source. In conclusion, we showed that Actinomycetes from explosive‐contaminated areas of Iran could degrade TNT and RDX. Hence, seeking and screening untapped ecosystems that possess unexplored Actinomycetes will increase the chances of discovering the resident microorganism that has been capable of degrading TNT and RDX for application in the bioremediation process. The results of this study can be useful in using intact bacteria in nature to eliminate environmental pollution, which is one of the major environmental problems in the world.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3