An application of LASSO and multiple imputation techniques to income dynamics with cross‐sectional data

Author:

Lucchetti Leonardo1,Corral Paul1,Ham Andrés2,Garriga Santiago3

Affiliation:

1. The World Bank

2. Universidad de los Andes

3. CEFIP

Abstract

This paper introduces, validates, and applies a Least Absolute Shrinkage and Selection Operator with multiple imputation by Predictive Mean Matching (LASSO‐PMM) method to estimate intra‐generational income dynamics from cross‐sectional data. We validate the method using 36 harmonized panel data sets in four Latin American countries and apply it to cross‐section data from 43 countries across the world. Results show that LASSO‐PMM predictions are statistically indistinguishable from actual household poverty rates, mobility indicators, and income or consumption changes. These findings suggest that estimating economic mobility using a LASSO‐PMM approach may accurately approximate actual income dynamics when panel data are unavailable.

Publisher

Wiley

Reference24 articles.

1. Assessing the predictive power of vulnerability measures: Evidence from panel data for Argentina and Chile;Bérgolo M. L.;Journal of Income Distribution,2012

2. Appraising income inequality databases in Latin America

3. Bourguignon F. &Moreno A. H.(2018).On synthetic income panels Working Papers HAL.https://EconPapers.repec.org/RePEc:hal:wpaper:halshs‐01988068

4. How sensitive is regional poverty measurement in Latin America to the value of the poverty line?;Castañeda R. A.;Economia,2018

5. Estimating poverty transitions using repeated cross-sections: a three-country validation exercise

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3