Degradation of oxalic acid by Trichoderma afroharzianum and its correlation with cell wall degrading enzymes in antagonizing Botrytis cinerea

Author:

Wu Xiaoqing1ORCID,Lyu Yuping2ORCID,Ren He3,Zhou Fangyuan1,Zhang Xinjian1,Zhao Xiaoyan1,Zhang Guangzhi1,Yang Hetong1

Affiliation:

1. Shandong Provincial Key Laboratory of Applied Microbiology Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan China

2. CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China

3. Shandong New Times Pharmaceutical Co., Ltd. Linyi China

Abstract

Abstract Aim Oxalic acid (OA) is one of the pathogenic factors of Botrytis cinerea. Trichoderma afroharzianum exerts both antagonistic and oxalate-degrading effects on B. cinerea. This study aimed to investigate the relationship between the elimination of OA by T. afroharzianum and its antagonistic effects on B. cinerea. Methods and Results Reversed-phase high performance liquid chromatogram (RP-HPLC) analysis showed that T. afroharzianum LTR-2 eliminated 10- or 20-mmol/L OA within 120 h, with the degradation being particularly efficient at the concentration of 20 mmol/L. RNA-seq analysis showed that the oxalate decarboxylase (OXDC) gene Toxdc, β-1,3-exoglucanase gene Tglu and aspartic protease gene Tpro of LTR-2 were significantly upregulated after treatment with 20-mmol/L OA. RT-qPCR analysis showed that under the conditions of confrontation, Toxdc and three cell wall degrading enzyme (CWDE) genes were upregulated before physical contact with B. cinerea. In addition, RT-qPCR analysis showed that OA synthesis in B. cinerea was not significantly affected by LTR-2. Conclusions The results revealed a correlation between OA degradation and mycoparasitism in T. afroharzianum when antagonising B. cinerea at the transcriptional level. Significance and Impact of the Study The relationship between OA degradation by T. afroharzianum and its effects against B. cinerea provide a new perspective on the antagonism of T. afroharzianum against B. cinerea. In addition, this study provides theoretical data for the scientific application of T. afroharzianum in the field of biocontrol.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shandong Province

Natural Science Foundation of Shandong Province

Project funded by Ji'nan Government

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3