Integrated non‐targeted metabolomics and transcriptomics reveals the browning mechanism of scraped ginger (Zingiber officinale Rosc.)

Author:

Tong Moru1234,Ding Yangfei1234ORCID,YU Hao5,Zhang Wei1234ORCID,Wu Deling1234

Affiliation:

1. College of Pharmacy, Anhui University of Chinese Medicine Hefei China

2. Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology Hefei China

3. Traditional Chinese Medicine Concoction Heritage Base of the State Administration of Traditional Chinese Medicine Hefei China

4. Anhui Collaborative Innovation Centre for Quality Enhancement of Taoist Chinese Medicinal Materials established by the Ministry of Commerce of Anhui Province Hefei China

5. Bozhou University Bozhou China

Abstract

AbstractGinger (Zingiber officinale Rosc.) possesses a rich nutritional profile, making it a valuable ingredient for a wide range of culinary applications. After removing its outer skin, ginger can be effectively utilized in the production of pickles and other processed food products. However, following scraping, ginger undergoes a series of physiological and biochemical changes during storage, which can impact its subsequent development and utilization in food. Thus, the current study aimed to investigate the browning mechanism of scraped ginger using non‐targeted metabolomics and transcriptomics. The findings revealed 149 shared differential metabolites and 639 shared differential genes among freshly scraped ginger, ginger browned for 5 days, and ginger browned for 15 days. These metabolites and genes are primarily enriched in stilbenes, diarylheptane, and gingerol biosynthesis, phenylpropanoid biosynthesis, and tyrosine metabolism. Through the combined regulation of these pathways, the levels of phenolic components (such as chlorogenic acid and ferulic acid) and the ginger indicator component (6‐gingerol) decreased, whereas promoting an increase in the content of coniferaldehyde and curcumin. Additionally, the activities of polyphenol oxidase (PPO) and peroxidase (POD) were significantly increased (p‐adjust <0.05). This study hypothesized that chlorogenic and ferulic acid undergo polymerization under the catalysis of PPO and POD, thereby exacerbating the lignification of scraped ginger. These findings offer a theoretical foundation for understanding the browning mechanism of ginger after scraping.Practical ApplicationGinger's quality and nutrition can change when its skin is removed. This happens due to physical and biochemical reactions during scraping. The browning that occurs affects both the taste and health benefits of ginger, we can better understand how to prevent browning and maintain ginger's quality. This research sheds light on improving ginger processing techniques for better products.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3