Study on the formation mechanism of blackening in damaged lotus rhizome epidermis: Effects of polyphenols and iron

Author:

Chen Xianqiang1,Huang Shengkai1,Yan Shoulei123ORCID,Li Jie12ORCID

Affiliation:

1. College of Food Science and Technology Huazhong Agricultural University Wuhan China

2. Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province Wuhan China

3. Hubei Honghu Lotus Rhizome Industry Research Institute Jingzhou China

Abstract

AbstractLotus rhizome is an important aquatic vegetable, but the blackening of lotus rhizome epidermis (LRE) seriously affects its appearance and quality, which makes lotus rhizome products unmarketable. In this study, the effects of polyphenols and iron on the LRE color were studied to explore the possible mechanism of LRE blackening. Results indicated that the measurable total phenols contents in the mud treatment (MT) group were significantly reduced, and the total iron contents were significantly increased compared with the bruised treatment group (p < 0.05). The high‐performance liquid chromatography results showed that the main polyphenols in LRE were dopa, gallocatechin, and catechin, as well as a small amount of catechol, epicatechin, proanthocyanidin B2, and proanthocyanidin C1. Moreover, the results of color difference and ultraviolet adsorption spectroscopy showed that there were obviously black or brown‐gray of dopa (525 nm), gallocatechin (504.5 nm), and catechin (550 and 504.5 nm) with FeCl2. The simulated system treatment of LRE further confirmed that the chromaticity effect of dopa and iron in bruised LRE was similar to that of the MT group, whereas 1% (w/w) ascorbic acid, 2% (w/w) EDTA‐2Na, or 3% (w/w) citric acid could solely prohibit the blackening. This suggested that the dopa in LRE and FeCl2 in mud may mainly combine into [2(DOPA‐2H+)+Fe3+] through non‐covalent interaction, which leads to the blackening of bruised LRE under neutral conditions. These results can guide the storage of lotus rhizomes and improve the development of the lotus rhizome industry.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3