A nozzle simulation chip toward high‐throughput formation of curcumin‐loaded zein nanoparticles with tunable properties

Author:

Lei Yanlin1ORCID,Kilker Sean1,Lee Youngsoo1

Affiliation:

1. Department of Food Science and Human Nutrition University of Illinois at Urbana‐Champaign Urbana Illinois USA

Abstract

AbstractSize of nanoparticle (NP) is a crucial factor in determining its applicability to various fields. This study aimed to develop a nozzle chip for the scalable formation of self‐assembled curcumin‐loaded zein NPs with tunable properties. A four‐factor (zein concentration in dispersed phase, ethanol concentration in continuous phase, flow rate ratio, and total flow rate), three‐level Box–Behnken design on the measured responses (particle size and polydispersity index [PDI]) was established. The particle size and PDI, ranging from 194.43 to 420.51 nm, and 0.089 to 0.219, respectively, were readily controlled by adjusting four factors. Under the optimal conditions of 6% zein, 0% EtOH, the flow rate ratio of 7, and a total flow rate of 8 mL/min targeting higher production rate, the particle size of 306.02 ± 1.52 nm (mean ± standard deviation) and the PDI of 0.135 ± 0.001 were obtained. High throughput for zein NP production (86.4 g/day) was reached, which was 200 and 960 times higher than using microfluidic and electrospraying techniques, respectively. Curcumin‐loaded zein NPs under the abovementioned experimental conditions were successfully prepared via the nozzle chip with the encapsulation efficiency of 64.29% ± 0.29%, a loading capacity of 3.06% ± 0.01%, enhanced stability, and improved in vitro antioxidant properties. Curcumin was primarily released from zein NPs in the simulated intestinal phase. This study demonstrated that the property of self‐assembled zein NPs can be tuned by altering the operating parameters using the nozzle simulation chip. The results suggest that this approach has potential for use in the food and pharmaceutical industries, particularly for curcumin encapsulation.Practical ApplicationThe fabricated nozzle chip is a promising technology to obtain zein nanoparticles (NPs) with enhanced productivity and narrow particle size distribution. It can be easily adopted to spray drying process. Besides, the nozzle chip shows the potential for the large‐scale production of bioactive loaded zein NPs in the food or pharmaceutical industries.

Funder

U.S. Department of Agriculture

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3