A review of the use of numerical analysis in stomach modeling

Author:

Liu Xinying1ORCID,Fletcher David F.1ORCID,Bornhorst Gail M.23ORCID

Affiliation:

1. School of Chemical and Biomolecular Engineering University of Sydney Sydney New South Wales Australia

2. Department of Biological and Agricultural Engineering University of California, Davis Davis California USA

3. Riddet Institute Palmerston North New Zealand

Abstract

AbstractFood digestion is important for human health. Advances have been made using in vitro models to study food digestion, but there is considerable potential for numerical approaches in stomach modeling, as they can provide a comprehensive understanding of the complex flow and chemistry in the stomach. The focus of this study is to provide a concise review of the developed numerical stomach models over the past two decades. The gastric physiological parameters that are required for a computational model to represent the human gastric digestion process are discussed, including the stomach geometry, gastric motility, gastric emptying, and gastric secretions. Computational methods used to model gastric digestion are introduced and compared, including different computational fluid dynamics as well as solid mechanics methods. The challenges and limitations of current studies are discussed, as well as the areas for future research that need to be addressed. There has been progress in simulating gastric fluid flow with stomach wall motion, but much work remains to be done. The complex food breakdown mechanisms and a comprehensive chemical digestion process have not been implemented in any developed models. Numerical method that was once computationally expensive will be revolutionized as computing power continues to improve. Ultimately, the advancement of modeling of gastric food digestion will allow for additional hypothesis testing to streamline the development of food products that are beneficial to human health.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3