Physicochemical, functional, and antioxidant properties of black soldier fly larvae protein

Author:

Huang Wangxiang1,Wang Chen1,Chen Qianzi1,Chen Feng1,Hu Haohan1,Li Jianfei1,He Qiyi1ORCID,Yu Xiaodong1

Affiliation:

1. Engineering Research Center of Biotechnology for Active Substances Ministry of Education School of Life Sciences Chongqing Normal University Chongqing China

Abstract

AbstractThis study explores the multifaceted attributes of black soldier fly larvae protein (BSFLP), focusing on its physicochemical, functional, and antioxidant properties. BSFLP is characterized by 16 amino acids, with a predominant random coil secondary structure revealed by circular dichroism spectra. Differential scanning calorimetry indicates a substantial thermal denaturation temperature of 97.63°C. The protein exhibits commendable solubility, emulsification, and foaming properties in alkaline and low‐salt environments, albeit with reduced water‐holding capacity and foam stability under elevated alkaline and high‐temperature conditions. In vitro assessments demonstrate that BSFLP displays robust scavenging proficiency against 2,2‐diphenyl‐1‐picrylhydrazyl, 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid), and hydroxyl radicals, with calculated EC50 values of 1.90 ± 0.57, 0.55 ± 0.01, and 1.14 ± 0.02 mg/mL, respectively, along with notable reducing capabilities. Results from in vivo antioxidant experiments reveal that BSFLP, administered at doses of 300 and 500 mg/kg, significantly enhances the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) (p < 0.05) while simultaneously reducing malondialdehyde levels in both serum and tissues of d‐galactose‐induced oxidative stress in mice. Moreover, the protein effectively attenuates oxidative damage in liver and hippocampal tissues. These findings underscore the potential utility of BSFLP as a natural antioxidant source, with applications spanning the food, pharmaceutical, and cosmetic industries.Practical ApplicationBlack soldier fly larvae protein emerges as an environmentally sustainable reservoir of natural antioxidants, holding significant promise for the food, pharmaceutical, and cosmetic sectors. Its advantageous amino acid composition, robust thermal resilience, and impressive functional attributes position it as a compelling subject for continued investigation and advancement in various applications.

Publisher

Wiley

Subject

Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3