Blockade of the T cell immunoglobulin and mucin domain protein 3 pathway exacerbates sepsis-induced immune deviation and immunosuppression

Author:

Zhao Z123,Jiang X1,Kang C4,Xiao Y5,Hou C1,Yu J2,Wang R1,Xiao H1,Zhou T1,Wen Z5,Feng J1,Chen G1,Ma Y2,Shen B1,Li Y1,Han G1

Affiliation:

1. Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, China

2. Institute of Immunology, Medical School of Henan University, Kaifeng, China

3. Department of Pathology, Zhengzhou People's Hospital, YIHE Hospital, Zhengzhou, China

4. Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China

5. Department of Respiratory Diseases, First Affiliated Hospital of the Chinese PLA General Hospital, Beijing, China

Abstract

Summary Sepsis is a life-threatening condition, but the pathophysiological basis and biomarkers for the monitoring of sepsis and as targets for therapy remain to be determined. We have shown previously that T cell immunoglobulin and mucin domain protein 3 (Tim-3), a negative immune regulator, is involved in the physiopathology of sepsis, but the underlying mechanisms remain unclear. In the present study, we showed that Tim-3 signalling modulated the response patterns of both macrophages and T helper cells in sepsis. Blockade of the Tim-3 pathway exacerbated sepsis-induced proinflammatory macrophage responses and lymphocyte apoptosis during the early phase of sepsis, and enhanced the shift to anti-inflammatory responses for both macrophages and T helper cells during the late phase of sepsis. Tim-3 signalling was found to regulate CD80 and CD86 expression on macrophages both in vivo and in vitro. Co-culture of T cells with Tim-3 knock-down macrophages led to a biased T helper type 2 (Th2) response, partially explaining how Tim-3 signalling shapes inflammation patterns in vivo. Further studies on this pathway might shed new light on the pathogenesis of sepsis and suggest new approaches for intervention.

Funder

National ‘973’ Fund, China

National Natural Sciences Foundation of China

Key program of the Beijing Natural Sciences Foundation

PLA Training project

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3