Cellular senescence impairs tendon extracellular matrix remodeling in response to mechanical unloading

Author:

Stowe Emma J.1,Keller Madelyn R.1,Connizzo Brianne K.1ORCID

Affiliation:

1. Department of Biomedical Engineering Boston University Boston Massachusetts USA

Abstract

AbstractMusculoskeletal injuries, including tendinopathies, present a significant clinical burden for aging populations. While the biological drivers of age‐related declines in tendon function are poorly understood, it is well accepted that dysregulation of extracellular matrix (ECM) remodeling plays a role in chronic tendon degeneration. Senescent cells, which have been associated with multiple degenerative pathologies in musculoskeletal tissues, secrete a highly pro‐inflammatory senescence‐associated secretory phenotype (SASP) that has potential to promote ECM breakdown. However, the role of senescent cells in the dysregulation of tendon ECM homeostasis is largely unknown. To assess this directly, we developed an in vitro model of induced cellular senescence in murine tendon explants. This novel technique enables us to study the isolated interactions of senescent cells and their native ECM without interference from age‐related systemic changes. We document multiple biomarkers of cellular senescence in induced tendon explants including cell cycle arrest, apoptosis resistance, and sustained inflammatory responses. We then utilize this in vitro senescence model to compare the ECM remodeling response of young, naturally aged, and induced‐senescent tendons to an altered mechanical stimulus. We found that both senescence and aging independently led to alterations in ECM‐related gene expression, reductions in protein synthesis, and tissue compositional changes. Furthermore, MMP activity was sustained, thus shifting the remodeling balance of aged and induced‐senescent tissues towards degradation over production. Together, this demonstrates that cellular senescence plays a role in the altered mechano‐response of aged tendons and likely contributes to poor clinical outcomes in aging populations.

Funder

National Institute on Aging

Directorate for Engineering

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3