Overexpression of mitochondrial fission or mitochondrial fusion genes enhances resilience and extends longevity

Author:

Traa Annika123,Keil Allison123,AlOkda Abdelrahman123,Jacob‐Tomas Suleima123,Tamez González Aura A.123,Zhu Shusen123,Rudich Zenith123,Van Raamsdonk Jeremy M.1234ORCID

Affiliation:

1. Department of Neurology and Neurosurgery McGill University Montreal Quebec Canada

2. Metabolic Disorders and Complications Program Research Institute of the McGill University Health Centre Montreal Quebec Canada

3. Brain Repair and Integrative Neuroscience Program Research Institute of the McGill University Health Centre Montreal Quebec Canada

4. Division of Experimental Medicine, Department of Medicine McGill University Montreal Quebec Canada

Abstract

AbstractThe dynamicity of the mitochondrial network is crucial for meeting the ever‐changing metabolic and energy needs of the cell. Mitochondrial fission promotes the degradation and distribution of mitochondria, while mitochondrial fusion maintains mitochondrial function through the complementation of mitochondrial components. Previously, we have reported that mitochondrial networks are tubular, interconnected, and well‐organized in young, healthy C. elegans, but become fragmented and disorganized with advancing age and in models of age‐associated neurodegenerative disease. In this work, we examine the effects of increasing mitochondrial fission or mitochondrial fusion capacity by ubiquitously overexpressing the mitochondrial fission gene drp‐1 or the mitochondrial fusion genes fzo‐1 and eat‐3, individually or in combination. We then measured mitochondrial function, mitochondrial network morphology, physiologic rates, stress resistance, and lifespan. Surprisingly, we found that overexpression of either mitochondrial fission or fusion machinery both resulted in an increase in mitochondrial fragmentation. Similarly, both mitochondrial fission and mitochondrial fusion overexpression strains have extended lifespans and increased stress resistance, which in the case of the mitochondrial fusion overexpression strains appears to be at least partially due to the upregulation of multiple pathways of cellular resilience in these strains. Overall, our work demonstrates that increasing the expression of mitochondrial fission or fusion genes extends lifespan and improves biological resilience without promoting the maintenance of a youthful mitochondrial network morphology. This work highlights the importance of the mitochondria for both resilience and longevity.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3