Mitigating the effect of linear infrastructure on arboreal mammals in dense forest: A canopy bridge trial

Author:

Mitchell Briony,Harrison Lee,Ainley Joanne,van der Ree Rodney,Soanes KylieORCID

Abstract

SummaryRoads and other linear infrastructure create treeless gaps that can limit the movement of non‐flying, arboreal animals. These negative effects are particularly strong in dense forests, where even narrow infrastructure corridors represent a significant change in habitat structure. Artificial canopy bridges are an increasingly common approach to mitigating the barrier effect of roads and other linear infrastructure on the movement of arboreal mammals; however, questions remain about the success of various designs for different species. Here we conduct an experimental evaluation of the response of a critically endangered possum, Leadbeater's Possum (Gymnobelideus leadbeateri), to two artificial canopy bridge designs: single‐rope bridges and ladder bridges. We found that both bridges were used by Leadbeater's Possum and five other species of arboreal marsupial to cross narrow, forestry roads. However, Leadbeater's Possums crossed ladder bridges 13 times more often than the single‐rope design (average of 564.5 and 41.75 crossings per design respectively). Radiotelemetry conducted on four Leadbeater's Possums prior to bridge installation detected no road crossings, providing preliminary evidence that the bridges improved cross‐road movement. Ladder bridges appear to be the better design choice for a wider range of arboreal marsupials as they were used more frequently, offer greater stability, and provide better predator avoidance than single‐rope designs.

Funder

Department of Environment, Land, Water and Planning, State Government of Victoria

Baker Foundation

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3