Fcγ receptor expression on splenic macrophages in adult immune thrombocytopenia

Author:

Audia S123ORCID,Santegoets K3,Laarhoven A G4,Vidarsson G4,Facy O5,Ortega-Deballon P5,Samson M12,Janikashvili N1,Saas P1,Bonnotte B12,Radstake T R3

Affiliation:

1. CR INSERM 1098, University of Bourgogne/Franche-Comté, Dijon, France

2. Department of Internal Medicine and Clinical Immunology, Competence Centre for Auto-Immune Cytopenia, Dijon, France

3. Laboratory of Translational Immunology, University Medical Centre, Utrecht

4. Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands

5. Department of Surgery, University Hospital, Dijon, France

Abstract

Summary Splenic macrophages play a key role in immune thrombocytopenia (ITP) pathogenesis by clearing opsonized platelets. Fcγ receptors (FcγR) participate in this phenomenon, but their expression on splenic macrophages and their modulation by treatment have scarcely been studied in human ITP. We aimed to compare the phenotype and function of splenic macrophages between six controls and 24 ITP patients and between ITP patients according to the treatments they received prior to splenectomy. CD86, human leucocyte antigen D-related (HLA-DR) and FcγR expression were measured by flow cytometry on splenic macrophages. The major FcγR polymorphisms were determined and splenic macrophage function was assessed by a phagocytosis assay. The expression of the activation markers CD86 and HLA-DR was higher on splenic macrophages during ITP compared to controls. While the expression of FcγR was not different between ITP and controls, the phagocytic function of splenic macrophages was reduced in ITP patients treated with intravenous immunoglobulin (IVIg) within the 2 weeks prior to splenectomy. The FCGR3A (158V/F) polymorphism, known to increase the affinity of FcγRIII to IgG, was over-represented in ITP patients. Thus, these are the first results arguing for the fact that the therapeutic use of IVIg during human chronic ITP does not modulate FcγR expression on splenic macrophages but decreases their phagocytic capabilities.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3