Affiliation:
1. Department of Bioscience, School of Biological and Environmental Sciences Kwansei Gakuin University Sanda Hyogo Japan
Abstract
AbstractDiatoms are one of the most important phytoplankton on Earth. They comprise at least ten thousand species and contribute to up to 20% of the global primary production. Because of serial endosymbiotic events and horizontal gene transfers, diatoms have developed a “secondary plastid” bounded by four membranes containing a large phase‐separated compartment, termed the pyrenoid. However, the physiological significance of this unique chloroplast morphology is poorly understood. Characterization of fundamental physiological parameters such as local pH in various subcellular compartments should facilitate a greater understanding of the physiological roles of the unique structure of the secondary plastid. A promising method to estimate local pH is the in situ expression of the pH‐sensitive green fluorescent protein. Here, we first developed the molecular tool for the mapping of in situ local pH in the diatom Phaeodactylum tricornutum by heterologously expressing pHluorin2 in the cytosol, periplastidal compartment (PPC; the space in between two sets of outer and inner chloroplast envelopes), chloroplast stroma, and the pyrenoid matrix. Our data suggested that PPC and the pyrenoid matrix are more acidic than the adjacent areas, the cytosol and the chloroplast stroma. Finally, absolute pH values at each compartment were estimated from the ratiometric fluorescence of a recombinant pHluorin2 protein, giving pH values of approximately 7.9, 6.8, 8.0, and 7.5 respectively, for the cytosol, PPC, stroma, and pyrenoid of the P. tricornutum cells, indicating the occurrence of pH gradients and the associated electrochemical potentials at their boundary.
Funder
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Subject
Cell Biology,Plant Science,Genetics,General Medicine,Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Algal chloroplast pyrenoids: Evidence for convergent evolution;Proceedings of the National Academy of Sciences;2024-03-21