Affiliation:
1. Department of Pharmacology, Basic Medical Sciences Center Shanxi Medical University Taiyuan China
2. Key Laboratory of Cellular Physiology, Ministry of Education Shanxi Medical University Taiyuan China
Abstract
AbstractAimsFew treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI.MethodsUsing a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time‐courses (one/two/three cycles of 10‐min inhalation/10‐min break) at Days 3–7, 3–14 or 7–18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP‐43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno‐associated virus were applied to investigate the molecular mechanisms.ResultsDCPC significantly promoted recovery of motor function in a concentration and time‐course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3. DCPC also increased puncta density of GAP‐43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation‐related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC.ConclusionsWe first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.
Funder
National Natural Science Foundation of China
Subject
Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献