Construction of a prognostic model with CAFs for predicting the prognosis and immunotherapeutic response of lung squamous cell carcinoma

Author:

Zhang Xiang1,Xiao Qingqing2,Zhang Cong3,Zhou Qinghua1,Xu Tao4ORCID

Affiliation:

1. Lung cancer center, West China hospital Sichuan university Chengdu China

2. Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital Sichuan University Chengdu China

3. Department of Thoracic surgery Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College) Chengdu China

4. Department of Thoracic Surgery The Affiliated Hospital, Southwest Medical University Luzhou China

Abstract

AbstractLung squamous cell carcinoma (LUSC) is one of the subtypes of lung cancer (LC) that contributes to approximately 25%–30% of its prevalence. Cancer‐associated fibroblasts (CAFs) are key cellular components of the TME, and the large number of CAFs in tumour tissues creates a favourable environment for tumour development. However, the function of CAFs in the LUSC is complex and uncertain. First, we processed the scRNA‐seq data and classified distinct types of CAFs. We also identified prognostic CAFRGs using univariate Cox analysis and conducted survival analysis. Additionally, we assessed immune cell infiltration in CAF clusters using ssGSEA. We developed a model with a significant prognostic correlation and verified the prognostic model. Furthermore, we explored the immune landscape of LUSC and further investigated the correlation between malignant features and LUSC. We identified CAFs and classified them into three categories: iCAFs, mCAFs and apCAFs. The survival analysis showed a significant correlation between apCAFs and iCAFs and LUSC patient prognosis. Kaplan–Meier analysis showed that patients in CAF cluster C showed a better survival probability compared to clusters A and B. In addition, we identified nine significant prognostic CAFRGs (CLDN1, TMX4, ALPL, PTX3, BHLHE40, TNFRSF12A, VKORC1, CST3 and ADD3) and subsequently employed multivariate Cox analysis to develop a signature and validate the model. Lastly, the correlation between CAFRG and malignant features indicates the potential role of CAFRG in promoting tumour angiogenesis, EMT and cell cycle alterations. We constructed a CAF prognostic signature for identifying potential prognostic CAFRGs and predicting the prognosis and immunotherapeutic response for LUSC. Our study may provide a more accurate prognostic assessment and immunotherapy targeting strategies for LUSC.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3