Enhanced inhibition of Pseudomonas aeruginosa virulence factor production and biofilm development by sublethal concentrations of eugenol and phenyllactic acid

Author:

Shariff M.1,Chatterjee M.1,Morris S.D.1,Paul V.1,Vasudevan A.K.1,Mohan C.G.1,Paul-Prasanth B.1,Biswas R.1ORCID

Affiliation:

1. Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, AIMS – Ponekkara Cochin Kerala India

Abstract

Abstract Biofilm development in Pseudomonas aeruginosa is regulated by its quorum sensing (QS) systems. It has three major QS systems: LasI/R, RhlI/R and PQS/MvfR. Previous studies showed that phenyllactic acid (PLA) binds to RhlR and PqsR and inhibits the Rhl and PQS QS; and eugenol at sublethal concentration inhibits Las and PQS QS systems. Here, we have demonstrated that a combination of sublethal doses of eugenol and PLA enhanced the inhibition of the QS mediated production of the virulence factors and biofilm development of this pathogen. A combination of 50 μmol l−1 eugenol and 0·3 mmol l−1 PLA significantly inhibited the pyocyanin production, protease activity, swarming motility and cytotoxic activities of P. aeruginosa strain PAO1, whereas eugenol and PLA when added individually to PAO1 cultures were less effective in inhibiting its virulence factor expression. Biofilm formation of PAO1 was reduced by 32, 19 and 87% on glass surfaces; and 54, 49 and 93% on catheter surfaces when treated using 50 μmol l−1 eugenol or 0·3 mmol l−1 PLA and their combinations, respectively. The in vitro finding in the reduction of biofilm development was further validated in vivo using a catheter associated medaka fish biofilm model. Our results indicate that a combination of QS inhibitors targeting different QS pathways should be selected while designing therapeutic molecules to achieve maximum QS mediated biofilm inhibition and clinical outcome against P. aeruginosa.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3