Development of a Dynamic Nomogram for Predicting the Probability of Satisfactory Recovery after 6 Months for Cervical Traumatic Spinal Cord Injury

Author:

Yan Xin1,He Yaozhi1,Jia Mengxian1,Yang Jiali2,Huang Kelun1,Zhang Peng1,Lai Jiaxin1,Chen Minghang1,Fan Shikang1,Li Sheng1,Fan Ziwei1,Teng Honglin1ORCID

Affiliation:

1. Department of Spine Surgery The First Affiliated Hospital of Wenzhou Medical University Wenzhou China

2. Department of Pediatric Allergy and Immunology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China

Abstract

ObjectiveCervical traumatic spinal cord injury (CTSCI) is a seriously disabling disease that severely affects the physical and mental health of patients and imposes a huge economic burden on patients and their families. Accurate identification of the prognosis of CTSCI patients helps clinicians to design individualized treatment plans for patients. For this purpose, a dynamic nomogram was developed to predict the recovery of CTSCI patients after 6 months.MethodsWe retrospectively included 475 patients with CTSCI in our institution between March 2013 and January 2022. The outcome variable of the current study was a satisfactory recovery of patients with CTSCI at 6 months. Univariate analyses and univariate logistic regression analyses were used to assess the factors affecting the prognosis of patients with CTSCI. Subsequently, variables (P < 0.05) were included in the multivariate logistic regression analysis to evaluate these factors further. Eventually, a nomogram model was constructed according to these independent risk factors. The concordance index (C‐index) and the calibration curve were utilized to assess the model's predictive ability. The discriminating capacity of the prediction model was measured by the receiver operating characteristic (ROC) area under the curve (AUC). One hundred nine patients were randomly selected from 475 patients to serve as the center's internal validation test cohort.ResultsThe multivariate logistic regression model further screened out six independent factors that impact the recovery of patients with CTSCI. Including admission to the American Spinal Injury Association Impairment Scale (AIS) grade, the length of high signal in the spinal cord, maximum spinal cord compression (MSCC), spinal segment fractured, admission time, and hormonal therapy within 8 h after injury. A nomogram prediction model was developed based on the six independent factors above. In the training cohort, the AUC of the nomogram that included these predictors was 0.879, while in the test cohort, it was 0.824. The nomogram C‐index incorporating these predictors was 0.872 in the training cohort and 0.813 in the test cohort, while the calibration curves for both cohorts also indicated good consistency. Furthermore, this nomogram was converted into a Web‐based calculator, which provided individual probabilities of recovery to be generated for individuals with CTSCI after 6 months and displayed in a graphical format.ConclusionThe nomogram, including ASIA grade, the length of high signal in the spinal cord, MSCC, spinal segment fractured, admission time, and hormonal therapy within 8 h after injury, is a promising model to predict the probability of content recovery in patients with CTSCI. This nomogram assists clinicians in stratifying patients with CTSCI, enhancing evidence‐based decision‐making, and individualizing the most appropriate treatment.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3