Controlling the effects of sampling bias in biodiversity models

Author:

Oliveira Ubirajara1ORCID,Soares‐Filho Britaldo1,Nunes Felipe1

Affiliation:

1. Centro de Sensoriamento Remoto Universidade Federal de Minas Gerais Belo Horizonte Brazil

Abstract

AbstractAimSampling bias and gaps have a direct influence on the perceived patterns of biodiversity, hence limiting our ability to make well‐informed decisions about biodiversity conservation. Yet most methods either disregard or underestimate the effects of sampling bias and gaps in modelling biodiversity patterns. Our objective is to test the sensitivity of commonly used methods for modelling biodiversity dimensions (richness, endemism, and beta diversity) to sampling bias and collection gaps, and as a way to mitigate those effects we introduce a novel approach that employs the sampling effort to minimize the effects of collection bias and gaps in biodiversity models.LocationSouth America.MethodsHere, we use controlled simulations of virtual species distribution and sampling effort to test the sensitivity to sampling bias and collection gaps by commonly used methods, that is, species distribution models (SDMs), spatial interpolation (SI), and environmental prediction (EP), for estimating species richness, endemism, and beta diversity. Our research contributes to advancing biodiversity modelling by introducing a novel approach, named uniform sampling from sampling effort (USSE), that employs the sampling effort to minimize the effects of collection bias and gaps.Results and Main ConclusionsEP with USSE has proven effective in accurately predicting species richness, especially in scenarios in which the sampling effort does not coincide with the biodiversity niches. It outperformed SI and SDMs. The latter performed poorly, yielding the lowest predictive score. In estimating endemism and beta diversity, all methods yielded similar results, without statistically significant differences. For estimating beta diversity, the generalized dissimilarity model proved to be a robust method, even in face of biased sampling. Controlled simulations are key to testing biodiversity methods. These tests can isolate confounding factors inherent to real‐world data, enabling robust methodological assessments. Although fieldwork and curation of collections must remain indispensable, novel biodiversity methods could help overcome the limitations of sampling biases, helping expedite conservation actions much needed.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3