Phenotypic and transcriptional features of Araliaceae species under distinct light environments

Author:

Niu Yu‐Qian1,Zhang Yu‐Xin1,Wang Xin‐Feng2,Wen Jun3,Wang Zhen‐Hui4,Yang Ji1,Wang Yu‐Guo1,Zhang Wen‐Ju1ORCID,Song Zhi‐Ping1,Li Lin‐Feng1ORCID

Affiliation:

1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences Fudan University Shanghai 200438 China

2. Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden Chinese Academy of Sciences Guangzhou 510650 China

3. Department of Botany, MRC 166 National Museum of Natural Washington DC USA

4. Department of Agronomy Jilin Agricultural University Changchun 130118 China

Abstract

AbstractElucidating how plant species respond to variable light conditions is essential to understanding the ecological adaptation to heterogeneous environments. Plant performance and gene regulatory network underpinning the adaptation have been well documented in heliophytic species. However, it remains largely unclear how the sciophytic plants respond to distinct light conditions. We measured phenotypic and transcriptomic features of four sciophytic (Fatsia japonica, Metapanax delavayi, Heptapleurum arboricola, and Heptapleurum delavayi) and one heliophytic woody species (Tetrapanax papyrifer) of the Araliaceae family under distinct light conditions. Our phenotypic comparisons demonstrate that the four sciophytic species maintain similar photosynthesis efficiency between high light and low light conditions. However, a significantly decreased photosynthesis rate was observed under the low light conditions of the heliophytic species compared with the high light conditions. In addition, our leaf anatomical analyses revealed that, while all five species showed different anatomical structures under distinct light conditions, the sciophytic species possessed a lower degree of phenotypic plasticity relative to the heliophytic species. Further comparisons of the transcriptome profiling showed that differentially expressed genes identified in the five species were functionally related to photosynthesis, secondary metabolites, and other basic metabolisms. In particular, differential regulation of the photosynthesis‐related and photomorphogenesis‐related genes were potentially correlated with the phenotypic responses to the distinct light conditions of the five species. Our study provides evolutionary and ecological perspectives on how the heliophytic and sciophytic woody species respond to shade and sunlight environments.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3