Zeta diversity differentiates factors driving community assembly of rare and common ectomycorrhizal fungi

Author:

van Galen Laura G.1ORCID,Orlovich David A.1ORCID,Lord Janice M.1ORCID,Bohorquez Julia12ORCID,Nilsen Andy R.1ORCID,Summerfield Tina C.1ORCID,Larcombe Matthew J.1ORCID

Affiliation:

1. Department of Botany University of Otago Dunedin New Zealand

2. Department of Applied and Environmental Sciences NorthTec Whangarei New Zealand

Abstract

AbstractA fundamental goal in community ecology is to understand what factors drive community assembly processes. The factors affecting ectomycorrhizal fungal communities are unknown in many regions, particularly in the southern hemisphere. We investigate community assembly using ITS2 metabarcoding of ectomycorrhizal fungi sampled from 3943 hyphal ingrowth bags buried in 81 Nothofagus forests across New Zealand's South Island. By applying zeta diversity analysis and multisite generalized dissimilarity modelling (MS‐GDM) we quantify the effects of 43 biotic and environmental variables on community turnover. Unlike traditional beta diversity analyses that are heavily influenced by rare species, the zeta diversity framework differentiates between factors driving turnover of rare and common species, providing a more complete picture of community dynamics. We found that community assembly was dominated by deterministic rather than stochastic processes and identified ecological factors affecting all taxa, as well as others that were specifically important to rare or common taxa. Soil variables were important drivers of turnover for all species, whereas ground cover variables, forest patch size, precipitation and host tree identity had greater effects on rarer species, and tree size and temperature effects were specific to more common species. Interestingly, the effect of temperature on common species is in line with recent evidence from other Kingdoms, pointing to possible generality, and highlighting the importance of considering common species. Applying these methods to fungi has allowed us to identify the distinct ecological processes that structure rare and common taxa during community assembly. This has important implications for understanding the functional effects of community responses to environmental change.

Funder

University of Otago

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3