Feature‐driven robust surgery scheduling

Author:

Wang Yu1ORCID,Zhang Yu2ORCID,Zhou Minglong3ORCID,Tang Jiafu4ORCID

Affiliation:

1. School of Business Administration Northeastern University Shenyang Liaoning China

2. School of Business Administration Southwestern University of Finance and Economics Chengdu Sichuan China

3. Department of Management Science School of Management Fudan University Shanghai China

4. College of Management Science and Engineering Dongbei University of Finance and Economics Dalian Liaoning China

Abstract

AbstractPatient features such as gender, age, and underlying disease are crucial to improving the model fidelity of surgery duration. In this paper, we study a robust surgery scheduling problem augmented by patient feature segmentation. We focus on the surgery‐to‐operating room allocations for elective patients and future emergencies. Using feature data, we classify patients into different types using machine learning methods and characterize the uncertain surgery duration via a feature‐based cluster‐wise ambiguity set. We propose a feature‐driven adaptive robust optimization model that minimizes an overtime riskiness index, which helps mitigate both the magnitude and probability of working overtime. The model can be reformulated as a second‐order conic programming problem. From the reformulation, we find that minimizing the overtime riskiness index is equivalent to minimizing a Fano factor. This makes our robust optimization model easily interpretable to healthcare practitioners. To efficiently solve the problem, we develop a branch‐and‐cut algorithm and introduce symmetry‐breaking constraints. Numerical experiments demonstrate that our model outperforms benchmark models in a variety of performance metrics.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3