A new bicornuate model of rat uterus transplantation

Author:

Polenz Dietrich1,Sauer Igor Maximilian1,Martin Friederike12,Reutzel‐Selke Anja1,Ashraf Muhammad Imtiaz1,Schirmeier Anja1,Lippert Steffen1,Führer Kirsten1,Pratschke Johann1,Tullius Stefan Günther23,Moosburner Simon14ORCID

Affiliation:

1. Department of Surgery, Experimental Surgery Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany

2. Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA

3. Einstein Berlin Institute of Health Visiting Fellow Charité – Universitätsmedizin Berlin Berlin Germany

4. BIH Academy, Clinician Scientist Program Berlin Institute of Health at Charité – Universitätsmedizin Berlin Berlin Germany

Abstract

AbstractIntroductionUterus transplantation has revolutionized reproductive medicine for women with absolute uterine factor infertility, resulting in more than 40 reported successful live births worldwide to date. Small animal models are pivotal to refine this surgical and immunological challenging procedure aiming to enhance safety for both the mother and the child.Material and MethodsWe established a syngeneic bicornuate uterus transplantation model in young female Lewis rats. All surgical procedures were conducted by an experienced and skilled microsurgeon who organized the learning process into multiple structured steps. Animals underwent meticulous preoperative preparation and postoperative care. Transplant success was monitored by sequential biopsies, monitoring graft viability and documenting histological changes long‐term.ResultsBicornuate uterus transplantation were successfully established achieving an over 70% graft survival rate with the passage of time. The bicornuate model demonstrated safety and feasibility, yielding outcomes comparable to the unicornuate model in terms of ischemia times and complications. Longitudinal biopsies were well‐tolerated, enabling comprehensive monitoring throughout the study.ConclusionsOur novel bicornuate rat uterus transplantation model provides a distinctive opportunity for sequential biopsies at various intervals after transplantation and, therefore, comprehensive monitoring of graft health, viability, and identification of potential signs of rejection. Furthermore, this model allows for different interventions in each horn for comparative studies without interobserver differences contrary to the established unicornuate model. By closely replicating the clinical setting, this model stands as a valuable tool for ongoing research in the field of uterus transplantation, promoting further innovation and deeper insights into the intricacies of the uterus transplant procedure.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3