Affiliation:
1. Department of Civil and Environmental Engineering University of Pittsburgh Pittsburgh Pennsylvania USA
2. Department of Chemical and Petroleum Engineering University of Pittsburgh Pittsburgh Pennsylvania USA
Abstract
AbstractGraphitic carbon nitride (g‐C3N4) has gained great interest as a visible‐light‐activated photocatalyst. As an emerging nanomaterial for environmental applications, its competitive performance and environmentally responsible synthesis are critical to its success. A powerful tool for informing material development with reduced environmental impacts is life cycle assessment (LCA). In this study, LCA is used to evaluate the environmental impacts of g‐C3N4 nanosheet produced via eight existing synthesis routes. The results reveal electricity as the main contributor to the cumulative impacts of all eight g‐C3N4 syntheses. There are opportunities to reduce energy demand, and consequently the synthesis impacts, by revising synthesis procedures (i.e., removing or reducing time of use of a piece of equipment), optimizing the calcination step (i.e., faster heating rate, lower heating time, lower temperature), and moving to cleaner electricity sources. Further, benchmarking the environmental impacts of g‐C3N4 nanosheets to a well‐established metal‐based photocatalyst, titanium dioxide nanoparticles (nano‐TiO2), reveals mixed comparative results. The synthesis method substantially influences the comparative impacts. Considering use‐phase benefits of activating g‐C3N4 with visible wavelength light emitting diodes compared to ultraviolet (UV) wavelengths for nano‐TiO2 results in a 52% energy demand reduction (in kWh). Performance of g‐C3N4 compared to a high‐energy disinfection approach (i.e., conventional UV) reveals an inability to meet drinking water disinfection standards for viral load reduction (4‐log reduction) with any mass of g‐C3N4, given its high embodied resource footprint. This work establishes a foundation to inform and direct g‐C3N4 nanosheets toward improved sustainable development.
Funder
Division of Chemical, Bioengineering, Environmental, and Transport Systems
National Science Foundation
University of Pittsburgh
Subject
General Social Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献