Investigating the disease‐modifying properties of sclerotiorin in Alzheimer's therapy using acetylcholinesterase inhibition

Author:

Ayyolath Aravind1ORCID,Kallingal Anoop2ORCID,Kundil Varun Thachan3ORCID,Suresh Akshay Maniyeri1ORCID,Jayadevi Variyar E.3ORCID

Affiliation:

1. Laboratory of Bacterial Genetics, Faculty of Chemistry Gdansk University of Technology Gdansk Poland

2. Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry Gdansk University of Technology Gdansk Poland

3. Department of Biotechnology and Microbiology, School of Life Science Kannur University Palayad Kerala India

Abstract

AbstractAlzheimer's disease (AD) is a progressive neurodegenerative disorder caused due to the damage and loss of neurons in specific brain regions. It is the most common form of dementia observed in older people. The symptoms start with memory loss and gradually cause the inability to speak and do day‐to‐day activities. The cost of caring for those affected individuals is huge and is probably beyond most developing countries capability. Current pharmacotherapy for AD includes compounds that aim to increase neurotransmitters at nerve endings. This can be achieved by cholinergic neurotransmission through inhibition of the cholinesterase enzyme. The current research aims to find natural substances that can be used as drugs to treat AD. The present work identifies and explains compounds with considerable Acetylcholinesterase (AChE) inhibitory activities. The pigment was extracted from thePenicillium mallochiiARA1 (MT373688.1) strain using ethyl acetate, and the active compound was identified using chromatographic techniques followed by structural confirmation with NMR. AChE inhibition experiments, enzyme kinetics, and molecular dynamics simulation studies were done to explain the pharmacological and pharmacodynamic properties. We identified that the compound sclerotiorin in the pigment has AChE inhibitory activity. The compound is stable and can bind to the enzyme non‐competitively. Sclerotiorin obeys all the drug‐likeliness parameters and can be developed as a promising drug in treating AD.

Publisher

Wiley

Subject

Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3