Affiliation:
1. Department of Pharmacology, School of Pharmacy Weifang Medical University Weifang China
2. Department of Medicinal Chemistry, School of Pharmacy Weifang Medical University Weifang China
3. Shandong Academy of Pharmaceutical Science Jinan China
Abstract
AbstractProprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic target for the treatment of hyperlipidemia. In discovery of novel small molecules that interfere PCSK9/LDLR protein–protein interaction (PPI), structural modification was performed based on our previously derived compounds. A series of [5,5′‐bibenzo[d][1,3]dioxol]‐6‐amine analogs were designed and synthesized for the activity evaluation. In the PCSK9/LDLR PPI impairing test, molecules D28 and D29, exhibited remarkable inhibitory potency with IC50 values of 8.30 and 6.70 μM compared with SBC‐115337 (17.89 μM), respectively. Molecular docking predicted the binding pattern of compounds D28 and D29 in the LDLR binding site of PCSK9. Hydrophobic interactions play an important role in the binding of aromatic molecular fragments to the pockets in the PCSK9/LDLR binding interface. Further LDLR expression and LDL uptake studies revealed that both D28 and D29 restored LDLR expression on the surface of hepatic HepG2 cells and improved extracellular LDL uptake in the presence of PCSK9. It is significant that molecules D28 and D29 exhibited potential for the treatment of hyperlipidemia in current in vitro investigations. Generally, lead compounds with novel structures were developed in the present study for further design of lipid‐lowering molecules by targeting PCSK9/LDLR PPI.
Subject
Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献