Affiliation:
1. Department of Pharmaceutical Sciences Guru Nanak Dev University Amritsar Punjab India
2. University Institute of Pharmaceutical Sciences, Panjab University Chandigarh India
3. Drug and Pollution testing Laboratory Guru Nanak Dev University Amritsar Punjab India
Abstract
AbstractFungal infections are posing serious threat to healthcare system due to emerging resistance among available antifungal agents. Among available antifungal agents in clinical practice, azoles (diazole, 1,2,4‐triazole and tetrazole) remained most effective and widely prescribed antifungal agents. Now their associated side effects and emerging resistance pattern raised a need of new and potent antifungal agents. Lanosterol 14α‐demethylase (CYP51) is responsible for the oxidative removal of 14α‐methyl group of sterol precursors lanosterol and 24(28)‐methylene‐24,25‐dihydrolanosterol in ergosterol biosynthesis hence an essential component of fungal life cycle and prominent target for antifungal drug development. This review will shed light on various azole‐ as well as non‐azoles‐based derivatives as potential antifungal agents that target fungal CYP51. Review will provide deep insight about structure activity relationship, pharmacological outcomes, and interactions of derivatives with CYP51 at molecular level. It will help medicinal chemists working on antifungal development in designing more rational, potent, and safer antifungal agents by targeting fungal CYP51 for tackling emerging antifungal drug resistance.
Subject
Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献