Azole resistance in Candida auris: mechanisms and combinatorial therapy

Author:

Jangir Puneet1,Kalra Sapna1,Tanwar Sunita1,Bari Vinay Kumar1ORCID

Affiliation:

1. Department of Biochemistry, School of Basic Sciences Central University of Punjab, VPO‐Ghudda Bathinda India

Abstract

Multidrug resistance Candida auris is a dangerous fungal pathogen that is emerging at an alarming rate and posing serious threats to public health. C. auris is associated with nosocomial infections that cause invasive candidiasis in immunocompromised patients. Several antifungal drugs with distinct mechanisms of action are clinically approved for the treatment of fungal infections. The high rates of intrinsic and acquired drug resistance, particularly to azoles, reported in characterized clinical isolates of C. auris make treatment extremely problematic. In systemic infections, azoles are the first‐line treatment for most Candida species; however, the increasing use of drugs results in the frequent emergence of drug resistance. More than 90% of the clinical isolates of C. auris is shown to be highly resistant to azole drugs especially fluconazole, with some strains (types) resistant to all three classes of commonly used antifungals. This presents a huge challenge for researchers in terms of completely understanding the molecular mechanism of azole resistance to develop more efficient drugs. Due to the scarcity of C. auris therapeutic alternatives, the development of successful drug combinations provides an alternative for clinical therapy. Taking advantage of various action mechanisms, such drugs in combination with azole are likely to have synergistic effects, improving treatment efficacy and overcoming C. auris azole drug resistance. In this review, we outline the current state of understanding about the mechanisms of azole resistance mainly fluconazole, and the current advancement in therapeutic approaches such as drug combinations toward C. auris infections.

Publisher

Wiley

Subject

Microbiology (medical),General Medicine,Immunology and Allergy,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3