Affiliation:
1. Department of Biochemistry, School of Basic Sciences Central University of Punjab, VPO‐Ghudda Bathinda India
Abstract
Multidrug resistance Candida auris is a dangerous fungal pathogen that is emerging at an alarming rate and posing serious threats to public health. C. auris is associated with nosocomial infections that cause invasive candidiasis in immunocompromised patients. Several antifungal drugs with distinct mechanisms of action are clinically approved for the treatment of fungal infections. The high rates of intrinsic and acquired drug resistance, particularly to azoles, reported in characterized clinical isolates of C. auris make treatment extremely problematic. In systemic infections, azoles are the first‐line treatment for most Candida species; however, the increasing use of drugs results in the frequent emergence of drug resistance. More than 90% of the clinical isolates of C. auris is shown to be highly resistant to azole drugs especially fluconazole, with some strains (types) resistant to all three classes of commonly used antifungals. This presents a huge challenge for researchers in terms of completely understanding the molecular mechanism of azole resistance to develop more efficient drugs. Due to the scarcity of C. auris therapeutic alternatives, the development of successful drug combinations provides an alternative for clinical therapy. Taking advantage of various action mechanisms, such drugs in combination with azole are likely to have synergistic effects, improving treatment efficacy and overcoming C. auris azole drug resistance. In this review, we outline the current state of understanding about the mechanisms of azole resistance mainly fluconazole, and the current advancement in therapeutic approaches such as drug combinations toward C. auris infections.
Subject
Microbiology (medical),General Medicine,Immunology and Allergy,Pathology and Forensic Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献