Historical land use patterns provide insight into contemporary insect diversity loss

Author:

Atmore Lane M.1ORCID,Buss Danielle L.2ORCID

Affiliation:

1. Centre for Ecological and Evolutionary Synthesis, Department of Biosciences University of Oslo Oslo Norway

2. Department of Archaeology and Cultural History NTNU University Museum Trondheim Norway

Abstract

Healthy insect populations are vital for maintaining natural ecosystems and essential to global food security. The ongoing dramatic loss of insect species and biomass is thus a global cause for concern, with much focus on this topic in the media. Yet, determining the mechanism behind these declines remains difficult, particularly when attempting to differentiate between anthropogenic drivers of biodiversity loss and long‐term natural fluctuations. In a From the Cover manuscript in this issue of Molecular Ecology, Crossley et al. (2022) examined the long‐term impact of land use change on freshwater insects by estimating levels of genetic diversity with publicly available data for the cytochrome c oxidase subunit 1 (CO1) mitochondrial locus from >700 aquatic insect species across the United States. Contemporary genetic diversity measures reflect both current and past demography and therefore are related to both past and present habitat change. Crossley et al. found that environments with greater cropland extent over the last 200 years were associated with lower genetic diversity in contemporary aquatic insect populations. This indicates that historical land use is an important factor in contemporary population dynamics. Most critically, in regions of historical cropland cover that have been converted towards other uses (such as urban environments) more recently, aquatic insect populations exhibited higher levels of genetic diversity, indicating a possible rebound in insect populations after cessation of agricultural activity. This study highlights the power of using publicly available data to answer crucial questions regarding the current biospheric emergency.

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial 2024;Molecular Ecology;2023-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3