Characterization of leaf trichomes and their influence on surface wettability of Salsola ferganica, an annual halophyte in the desert

Author:

Liu Yanxia1ORCID,Hanati Alayi1,Lan Haiyan1

Affiliation:

1. Xinjiang Key Laboratory of Biological Resources and Genetic Engineering College of Life Science and Technology, Xinjiang University Urumqi China

Abstract

AbstractMany organisms use functional surfaces to collect water from the atmosphere. Salsola ferganica Drob. is one of the most abundant plants in desert regions and thrives in extreme environments with multiple but limited water resources, including dew and fog; however, its mechanisms of water harvesting remain unclear. We investigated trichome structural characteristics and their influence on the surface wettability of S. ferganica leaves using a variety of approaches (scanning electron microscopy, optical microscopy, immunolabelling staining, x‐ray diffractometry, and infrared spectroscopy). Microstructural observations revealed that the trichomes of S. ferganica presented a curved upper part, the ‘spindle node’‐like structure in the middle, and the micro‐grooves structure in between; such unique structures may aid in capturing moisture from the air. The physicochemical characteristics of the trichome surface, including hydrophobic functional groups, hydrophilic pectins, and low crystallinity, may enhance the adhesion of water drops to trichomes. Furthermore, we discovered that the piliferous S. ferganica leaves were more effective in retaining water than the glabrous S. aralocaspica leaves, and the dense trichome layer exhibited a significantly unwettable surface (high contact angle with droplets), whereas the individual trichomes retained water effectively (more so under drought conditions). The combination of these two properties is consistent with the ‘rose petal effect’, which describes rough surfaces that are hydrophobic but exhibit high adhesion with water. These factors suggest that the evolutionary optimisation of water acquisition by coupling relevant microstructures with the physicochemical properties of trichomes enables S. ferganica to survive harsh conditions in the seedling stage.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3